Atomic-level understanding of interface interactions in a halloysite nanotubes–PLA nanocomposite
نویسندگان
چکیده
منابع مشابه
TiO2/Clay Minerals (Palygorskite/Halloysite) Nanocomposite Coatings for Water Disinfection
Microfibrous palygorskite and tubular halloysite clay mineral combined with nanocrystalline TiO2 are incorporating in the preparation of nanocomposite films on glass substrates via sol-gel route at 450C. The synthesis is employing nonionic surfactant molecule as pore directing agent along with acetic acid-based sol-gel route without addition of water molecules. Drying and thermal treatment of c...
متن کاملUnderstanding Atomic Interactions to Achieve Well-being.
Voltage-gated sodium channels are among the most active and ubiquitous molecular machines found in animals. Residing in the cell membranes of excitable and other cells, they derive energy for their opening and closing from changes in membrane potential. In some cells, particularly those in sensory information–encoding structures of the central and peripheral nervous systems, these changes take ...
متن کاملAtomic-Level Understanding of "Asymmetric Twins" in Boron Carbide.
Recent observations of planar defects in boron carbide have been shown to deviate from perfect mirror symmetry and are referred to as "asymmetric twins." Here, we demonstrate that these asymmetric twins are really phase boundaries that form in stoichiometric B(4)C (i.e., B(12)C(3)) but not in B(13)C(2). TEM observations and ab initio simulations have been coupled to show that these planar defec...
متن کاملInvestigation of Atomic Level Patterns in Protein—Small Ligand Interactions
BACKGROUND Shape complementarity and non-covalent interactions are believed to drive protein-ligand interaction. To date protein-protein, protein-DNA, and protein-RNA interactions were systematically investigated, which is in contrast to interactions with small ligands. We investigate the role of covalent and non-covalent bonds in protein-small ligand interactions using a comprehensive dataset ...
متن کاملComputational prediction of heterogeneous interface properties at the atomic level
The interactions across interfaces between different phases govern the behavior of a wide range of systems of high technological importance, such as catalysts (gas/solid), energy storage (liquid/solid or solid/solid) or biomedicine (liquid/solid), just to cite a few examples. The simulation of such systems poses considerable challenges due to their inherent complexity, which often cannot be cap...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: RSC Advances
سال: 2019
ISSN: 2046-2069
DOI: 10.1039/c9ra08772a